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Abstract

Modern software development demands code that is maintainable, testable, and
scalable by organizing the implementation into modular components with iterative
reuse of existing codes. We formalize this iterative, multi-turn paradigm as codeflow
and introduce CodeFlowBench, the first benchmark designed to comprehensively
evaluate LLMs’ ability to perform codeflow – implementing new functionality by
reusing existing functions over multiple turns. CodeFlowBench comprises 5,258
problems from Codeforces and is continuously updated via an automated pipeline,
which decomposes each problem into subproblems with unit tests based on depen-
dency tree analysis and dataflow analysis. We further propose a novel evaluation
framework featured dual assessment protocol and structural metrics derived from
dependency trees. Extensive experiments on 16 popular LLMs reveal significant
performance degradation in multi-turn scenarios. For instance, o1-mini retains only
20.8% Pass@1 in multi-turn scenario versus 37.8% in single-turn scenario. More
fine-grained analysis illustrates that model performance inversely correlates with
dependency complexity. These findings not only highlight the critical challenges
for supporting real-world workflows, but also establish CodeFlowBench as an
essential tool for advancing code generation research.

1 Introduction

Large Language Models (LLMs) have revolutionized code generation, with benchmarks like Hu-
manEval [5] and MBPP [3] establishing foundational standards. As LLM capabilities advance, their
role in real-world software development has expanded beyond solving toy problems to supporting
complex workflows [21, 23, 28]. Modern benchmarks such as DevBench [25] and SWE-Bench [22]
now emphasize practical scenarios like bug fixing. However, current benchmarks [9, 15, 35] still
overlook the critical aspect of real-world development: the multi-turn and iterative codeflow scenario.

The CodeFlow Task In modern software engineering, multi-turn and iterative workflows are
becoming increasingly prevalent, as the cornerstones of best practices like agile development [24, 1, 6].
By breaking down complex tasks into manageable subproblems, progressively refine solutions and
reuse modular functions, developers can achieve faster delivery, reduced redundancy and enhanced
maintainability in teamwork [12, 7]. For example, React’s core package alone sees over 37 million
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Figure 1: An example of building a currency arbitrage detection and execution system. The left side
demonstrates a codeflow workflow, where modular functions are reused to construct the main logic.
The right side represents a single-turn implementation, combining all steps into a monolithic block.

weekly downloads across 2 300+ dependent modules, illustrating the productivity gains of modular
reuse [4]. As shown in Fig. 1 and 2, by building solutions by traversing the function dependency tree
from the bottom up, the structured codeflow can both enables parallel development and improves
readability, testability and maintainability through modular and responsibility boundaries. For
LLMs to integrate effectively into such workflows, they must handle multi-turn interactions, manage
dependencies between code segments and generate reusable components for subsequent iterations.

Motivation Despite the growing demands, current benchmarks have not fully captured the multi-
turn and iterative aspects of codeflow. Firstly, most benchmarks, such as HumanEval and MBPP,
focus only on single-turn code generation. While recent benchmarks like BigCodeBench [40] and
SWE-Bench [22] have begun to incorporate practical development scenarios, they still remain at
the level of single-turn code modification (or two-turn code generation), leaving the multi-turn
generation capabilities unknown. Secondly, the few existing multi-turn benchmarks such as MTPB
[31], only focus on single-function programming, lacking both unit tests and sufficient complexity to
reflect real-world dependencies. Finally, due to the absence of an update mechanism, previous static
datasets risk contamination and unreliable assessment. Therefore, there is a pressing need for a more
challenging, well-annotated and frequently updated benchmark specially designed for codeflow.

To bridge this gap, we propose CodeFlowBench, a novel evaluation benchmark that sources its
problems from the competitive programming platforms like Codeforces1, featuring high difficulty
(competition-level problems), high quality (peer-reviewed editorial solutions), and periodic updates
(frequent problem additions), elaborated in Appendix A. CodeFlowBench leverages platforms’
frequent release of new problems to ensure continuous updates for the uncontaminated benchmark.
Based on dependency decomposition and online submission check, an automated, lightweight pipeline
is further developed to process original problems into sets of multi-turn, iterative subproblems
with verified test cases and solutions. Remarkably, CodeFlowBench also introduces a specialized
evaluation framework, including structural labels and metrics derived from dependency trees, to
comprehensively assess multi-turn performance and provide more insights for model shortcomings.

Contributions In this paper, we present the first edition of CodeFlowBench, which comprises 5,258
complex problems fetched from the Codeforces problem archive accumulated until now. To ensure
ongoing fairness and freshness, we will periodically perform the automated pipeline and update the
benchmark with brand-new, uncontaminated problems. Our main contributions are threefold:

https://codeforces.com/
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• Pipeline Innovation: We develop a data curation pipeline based on competition platform.
This pipeline decomposes official solutions based on function dependencies to create multi-
turn, iterative code problems that require code reuse. This lightweight pipeline is fully
automated, rigorously verifiable, and easy to maintain, facilitating frequent updates.

• Benchmark Construction: We introduce the first benchmark specifically designed to
evaluate the multi-turn, iterative code generation capabilities for codeflow settings. It
features a large and diverse collection of 5,258 complex code problems. By leveraging
official editorial solutions, automatically verifying generated code, and capturing test cases
through input-output streams, we ensure the quantity and quality of our dataset.

• Evaluation Design & Insights: We propose a novel evaluation framework that contrasts
multi-turn and single-turn code generation patterns. Our framework introduces new struc-
tural labels and metrics derived from the dependency trees, aiming to better capture the
unique characteristics of multi-turn tasks. These innovations bridge the gap between tra-
ditional evaluation metrics and the specific challenges posed by iterative code generation.
Extensive experiments reveal the huge performance drop in the codeflow scenarios, even for
large reasoning models, highlighting the need for more advanced multi-turn capabilities.

2 Related Work

Code Generation Benchmarks The landscape of code generation benchmarks has evolved from
simpler to more complex tasks to keep pace with the rapid development of LLMs [26, 32, 39], but
still fail to comprehensively capture the multi-turn and iterative features of real-world scenarios.
Early works like HumanEval [5] and MBPP [3] focus on standalone functions with low complexity
and limited dependency environments. Recent benchmarks have emerged to evaluate more complex
and realistic scenarios, yet have obvious limitations: most benchmarks such as APPS [13], Live-
CodeBench [20] and SWE-Bench [22] are limited to single-turn code generation or modification. For
the few existing multi-turn benchmarks, MTPB [31] focus on overly simplistic single-function pro-
gramming without paired unit tests, while InterCode [38] discusses interactive coding with execution
feedback. In stark contrast, codeflow structures the development into multi-turn processes, ensuring
each component is maintainable, testable and reusable. These limitations highlight the crucial gaps
for codeflow benchmarking, and the CodeFlowBench pioneers this research line.

Code Generation LLMs Recent years have witnessed unprecedented progress in code gener-
ation capabilities of LLMs. Early works such as Codex [5] and AlphaCode [26] demonstrated
proficiency in tasks ranging from code completion to competition-level problem solving. With the
scaling up of pre-trained models, exemplified by GPT-4 [2], Code-Llama [33], Deepseek-Coder
[10] and Qwen2.5-Coder [16], these advanced models have impressive performance across various
programming tasks, languages and domains. Building on these foundations, the code generation
capabilities have further advanced through instruction tuning and agent frameworks. Models such as
WizardCoder [29] and Magicoder [36] leverage instruction tuning to improve intent alignment and
interactive dialogue capabilities, while agent frameworks like AgentCoder [14] and MapCoder [18]
enable autonomous planning, iterative refinement, and self-evaluation. Despite these advancements,
the community still remains unknown about "how well and how deeply LLMs can perform code-
flow"—a critical paradigm for real-world software engineering. Our CodeFlowBench thus provides a
principled framework for advancing both model development and evaluation [21].

3 CodeFlowBench

CodeFlowBench is a lively-updated benchmark which currently contains 5,258 diverse, high-quality
and challenging problems. An example problem of CodeFlowBench is shown in Figure 2. In this
section, we introduce the data curation pipeline and evaluation framework of CodeFlowBench.

3.1 Data Curation Pipeline

We designed an automated, lightweight data-curation pipeline to generate complex multi-turn coding
problems. The pipeline consists of two main phases: (1) Data Preparation (Stages I–III), which
involves source-specific routines tailored to collect and normalize raw problem data from various
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Figure 2: An example problem from CodeFlowBench, sourced from Codeforces problem 2055E. The
top-left block displays the problem information. The bottom-left block illustrates the dependency
structure, with nodes as subproblems and edges as dependency relationships. The right block details
each subproblem, where models solve these subproblems iteratively. The bottom block shows the
LLM interaction workflow for each turn.

platforms. (2) Subproblem Generation (Stages IV–VI), which employs an universally applicable
problem decompostion framework. This framework systematically analyzes dependency relationships
between functions or classes, and back-translates functions into coherent and sequential subproblems.
Notably, our implementation is the first to integrate both official problem editorials and automated
submission checker into the data curation process. Leveraging official editorials and submission
checker provides reliability benefits, such as eliminated copyright issues or data cleaning needs, and
it also ensures the codeflow implementation is high-quality and optimal for each problem. As shown
in Fig. 3, our pipeline specifically comprises the following stages:

Stage I: Scrape Problem Information We initiate the process by visiting the Codeforces problem
list and navigating to each problem’s page to extract the following information: problem ID, title, time
and memory limits, problem description, input/output specifications, sample tests, notes. Furthermore,
by querying the official Codeforces API, we retrieve each problem’s rating and tags. Please refer to
Appendix B.1 for information details and examples.

Stage II: Scrape Editorial Information We gather editorial content from corresponding tutorial
pages, where each problem’s ID, textual explanation, and solution code are listed sequentially. By
identifying problem IDs through URL and text patterns, we extract the relevant content and associate
it with the problem list generated in Stage I. Low-quality entries are filtered out, and solutions are
categorized into text and code components. Please refer to Appendix B.2 for more details.
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Code Source

"problem-id": "1946C",
"problem-url": https://codeforces.com/,
"title": C. Tree Cutting,
"time-limit": time limit per test 3 second,
"memory-limit": memory limit per test 
512 MB,
"problem-description": You are given a tree ...
"input": input format,
"output": output format,
"test-cases":{input:[…],output:[…]},

"text": 
Editorial: First, if p_1 
is not equal to 1, or 
s_{m_2} is not equal to n, 
or p_{m_1} is not equal to 
s_1,then the answer is 0 for 
o b v i o u s  r e a s o n s . 
Otherwise ...

Text Solution

Identifier recognition
"code": 
class Class:
 def __init__(self, ...):
 
  self.parameter1 = xxx
 self.parameter2 = xxx
 
 def  FunctionName1: ...

Code Solution

Dropped

Generate

"Solution": 
import sys
import math
def solve():
input = sys.stdin.read()
....

Solution codes 

Failed

Validate

Abstract Syntax Tree

Subproblems

"name": comb,
"statement":” This function 
compute binomial coefficient 
C(n, k) modulo 1e9+7....",
"depth": 1,
"dependencies": []
"solution":  def comb():

 Subproblem

Overall 
Turns

Problem

Solution

Subproblems

Test Cases

Generate

Passed

Parsing

"problem-id": "1946C",
"solution":  def solve():
input = sys.stdin.read()
....

 Problem

"problem-id": "1946C",
"solution":  def solve():
input = sys.stdin.read()

 Problem
run.py

(args,
kwargs) return

I. Scrape Problem Information

II. Scrape Editorial Information

III. Solution Code Generation

IV. Subproblem Generation

CodeFlowBench

V. Test Cases 
Generation

VI. Automatic labeling

*

*

*

*

Text Code

Filter

Overall
Depth

Figure 3: The data curation pipeline. Left: in the data-collection stage, we scrape problems and
corresponding text and code solutions. Middle: in the data-processing and subproblem-generation
stage, we validate solutions, parse codes into abstract syntax trees, decompose original problems
into individual subproblems, and generate test cases. Right: the final labeling stage for complexity
analysis, and the curated CodeFlowBench problem set.

Stage III: Solution Code Generation We input both the problem and its explanation information
into the Deepseek-R1 model [11], which either directly uses the provided code implementation or
organizes the existing textual solution and converts it into parsable solution code that meets the
requirements for extracting function dependencies and constructing subproblems. The generated
code is then submitted to the Codeforces platform for correctness verification, and we retain only
those codes that successfully solve the problem. The prompt template can be found in Appendix B.3.

Stage IV: Subproblem Generation We parse the abstract syntax tree (AST) of codes from Stage
III to extract function dependencies, filter out built-in functions, and conduct topological sort so that
lower-level ones come first. We then treat each function as a subproblem and record its solution
code, AST depth, and dependencies information. These information, along with the problem and
explanation, are fed into Deepseek-V3 [27] to back-translate a subproblem description. Finally, a
subproblem contains the following fields: name, statement, depth, dependencies, solution. Detailed
explanations of the prompt template and an example can be found in Appendix B.4.

Stage V: Test Cases Generation For every problem, publicly accessible test cases from the
Codeforces platform are scraped and used to execute the respective solution codes. During execution,
we capture input-output pairs at every function call location, which serve as test cases for the
corresponding subproblems. Further elaboration on this process can be found in Appendix B.5.

Stage VI: Automatic Labeling To quantify the complexity of the curated problems for fine-grained
analysis, we define two metrics: Overall-Turns–the number of turns required to solve the entire
problem; Overall-Depth–the depth of the AST, where the main/solve function as the root and
subproblems as nodes. As shown in Fig. 4, we report the distributions of overall-turns and overall-
depths, and correlate them with the difficulty ratings provided by Codeforces. The strong correlation
observed confirms that our label effectively captures problems’ intrinsic complexity.

3.2 Evaluation Framework

Task Definition The evaluation design of CodeFlowBench follows best practices defined in Hu-
manEval [5] but introduces a novel multi-turn iterative paradigm. That is, models are required to
implement a given function in each round. However, CodeFlowBench introduces distinct differences
in the supporting materials provided to the models. Beyond the function signature and problem
description, we include dependency information and pre-implemented functions for code reuse.
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(a) Distributions of overall-turns and overall-depth. (b) The Correlations with Rating Levels.

Figure 4: Statistics of the overall-turns and overall-depth metrics in CodeFlowBench. Subfigure (b)
shows inflection points at turns = 1 and depth = 1. This is attributed to the fact that competition-level
problems are not restricted to multi-turn or deeply nested structures. Partial difficult problems are
designed to be solvable by single function such as number theory related problems.

Additionally, we provide an overarching background description of the problem. This reflects the
real-world scenario where developers often possess overall understanding of the entire problem when
implementing code incrementally.

As illustrated in Fig. 2, models must implement target functions while leveraging dependency
relationships and pre-implemented components from prior turns. Formally, given T total turns, the
function implementation Ct at turn t is generated based on:

• Function signature Ft and subproblem description St for the current target function,
• Background context B describing the overarching programming problem,
• Dependency specifications D = {k1, ..., kd} indicating prerequisite functions Fk1 , ...,Fkd

,
• Verified functional implementations {C1, ...,Ct−1} of previous dependencies.

For baseline comparison, we define the single-turn variant where the model generates all components
simultaneously. The mathematical expressions of both settings are presented below:

Ct ← p
(
·
∣∣∣ Ft,St, {Fk1 ,Fk2 , . . . ,Fkd

}, {C1,C2, . . . ,Ct−1},B
)

(1 ≤ t ≤ T ),

{C1,C2, . . . ,CT } ← p
(
·
∣∣∣ {F1,F2, . . . ,FT }, {S1,S2, . . . ,ST },B

)
.

Performance Metrics We adopt widely-used Pass@k [5] as the main metric for both multi-turn
and single-turn cases, but augment it with novel diagnostics for multi-turn analysis. While Pass@k
evaluates final success rates, the coarse-grained nature fails to capture partial progress in failed
attempts - two models may fail solve the entire problem at different stages but receive identical scores.

To address this limitation, we propose a new metric, Pass Turn (PT ), which identifies the exact turn
at which a model fails by leveraging unit tests for each subproblem. However, only considering
failing turns may be biased due to the arbitrary topological ordering at the same depth. We further
define, Pass Depth (PD = D − d), for bottom-up programming, where d and D are working depth
and total depth. For statistical significance, we define the Average Pass Turn (APT) and Average Pass
Depth (APD) by averaging across problems grouped by turn or depth. For multiple trials, we define
APD@k and APT@k following the Pass@k expression. Refer to Appendix C for more details.

4 Experiments

Experiment Setup For comprehensive experiments, we evaluate both close-sourced and open-
sourced models. The closed-source models include the GPT family (o3-mini, o1-mini, GPT-4.1-mini,
GPT-4o-mini and GPT-4o) [19, 17], Claude-3.5-Sonnet and Gemini-2.0-flash. The open-source
models include the Qwen family (Qwen-2.5-Coder-7B-Instruct, Qwen-2.5-Coder-32B-Instruct,
Qwen-2.5-72B-Instruct and QwQ-32B) [16, 37, 34], the DeepSeek family (DeepSeek-v3 and
DeepSeek-R1) [27, 11], the Llama family (Llama-3.1-8B-Instruct and Llama-3.3-70B-Instruct)
[8] and Yi-Coder-9B-Chat [30]. To eliminate potential data leakage and unnecessary evaluation
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Table 1: Performance comparison on CodeFlowBench with Pass@1 and APD@1 (Average Pass
Depth) metrics. As a reference for overall APD, CodeFlowBench’s average problem depth is 1.94.

Model Pass@1 APD@1 (Average Pass Depth)

Multi-turn Single-turn Overall Depth1 Depth2 Depth3 Depth4

Closed-Source
o3-mini 22.7 38.9 0.570 0.322 0.585 0.818 1.250
o1-mini 20.8 37.8 0.541 0.233 0.581 0.818 1.125
GPT-4.1-mini 24.4 38.7 0.602 0.265 0.673 0.873 1.042
GPT-4o 17.5 30.2 0.494 0.177 0.539 0.758 1.042
GPT-4o-mini 13.8 22.0 0.423 0.138 0.438 0.697 1.167
Gemini-2.0-flash 17.3 31.6 0.496 0.183 0.527 0.782 1.042
Claude-3.5-Sonnet 13.6 36.0 0.414 0.117 0.444 0.648 1.167

Open-Source (7B-Level)
Llama-3.1-8B-Instruct 0.9 3.5 0.208 0.011 0.224 0.412 0.792
Qwen2.5-Coder-7B-Instruct 2.3 15.0 0.233 0.018 0.247 0.436 0.750
Yi-Coder-9B-Chat 5.0 13.8 0.228 0.021 0.270 0.388 0.500

Open-Source (32B-Level)
Qwen2.5-Coder-32B-Instruct 8.6 19.8 0.316 0.067 0.342 0.570 0.917
QwQ-32B-Preview 17.3 32.7 0.487 0.261 0.539 0.570 1.042

Open-Source (70B-Level)
Llama-3.3-70B-Instruct 15.0 27.6 0.448 0.163 0.465 0.733 1.042
Qwen2.5-72B-Instruct 9.1 21.3 0.301 0.110 0.314 0.497 0.583

Open-Source (Large Model)
Deepseek-V3 18.0 35.7 0.529 0.219 0.549 0.836 1.208
Deepseek-R1 20.5 46.1 0.569 0.303 0.606 0.842 0.916

overhead, we select the most recent 1000 problems from CodeFlowBench for tests. Each model is
evaluated in both multi-turn and single-turn scenarios, with Pass@k and APD@k as the primary
metrics. Please refer to Appendix D.1 and D.2 for more implementation details.

4.1 Main Experiments

Overall Performance Table 1 presents the extensive experiments across 1,000 latest problems. The
highest observed Pass@1 score of 24.4% and maximum APD@1 of 0.602 demonstrate the bench-
mark’s rigorousness, with even state-of-the-art LLMs struggling to achieve satisfactory performance.
While closed-source models generally outperform the open-source ones, exceptions exist—notably
DeepSeek-R1 surpasses several proprietary models. Notably, two model categories exhibit parameter-
efficient competence: specialized coding models and reasoning models. Small coding models like
Qwen2.5-Coder and Yi-Coder deliver surprising Pass@1 relative to model size, while reasoning
models like QwQ-32B-Preview approach GPT-4o’s performance via test-time scaling. These findings
suggest that domain-specific and reasoning models are promising directions for future advancements.

Multi-Turn versus Single-Turn Table 1 also reveals the substantial performance gap between
the multi-turn and single-turn scenarios. This gap underscores the inherent complexity of multi-
turn code generation, which requires models to "look before and after" for long-context coherence
across iterative function implementations. Furthermore, we observe distinct features of models’
performance across single-turn and multi-turn scenarios: while models like Claude-3.5-Sonnet and
DeepSeek-R1 excel in single-turn scenarios, they exhibit up to +60% performance degradation in
multi-turn settings. In contrast, models such as GPT-4o and Llama-3.3-70B-Instruct demonstrate
more consistent performance. The fundamental difference lies in the cognitive demands: single-turn
evaluation examines complex reasoning capabilities, while multi-turn evaluation needs to generate
reusable, modular functions, and integrate them into larger components. These insights expose
under-explored limitations such as iterative development and dependency management.

Depth-Wise Performance The performance stratification across dependency depths reveals distinct
model characteristics. Small open-source models (7B-32B parameters) show pronounced depth-
specific biases—Qwen2.5-Coder-7B achieves 0.750 APD@1 on Depth4 problems versus 0.018 on
Depth1, suggesting emergent compositional abilities despite limited parameter counts. In contrast,
larger models exhibit more balanced performance profiles, with GPT-4.1-mini maintaining 0.265-
1.042 APD@1 across depths. Surprisingly, top performers like DeepSeek-R1 show no significant
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Table 2: Performance comparison on CodeFlowBench with the APT@1 (Average Pass Turn) metric.
As a reference for overall APT, CodeFlowBench’s average problem turn is 2.20.

Model Overall Turn1 Turn2 Turn3 Turn4 Turn5

Closed-Source
o3-mini 0.600 0.322 0.632 0.777 0.983 0.571
o1-mini 0.581 0.233 0.645 0.798 0.879 0.667
GPT-4.1-mini 0.646 0.265 0.760 0.803 1.034 0.762
GPT-4o 0.537 0.177 0.604 0.697 1.017 0.476
GPT-4o-mini 0.467 0.137 0.501 0.638 0.982 0.476
Gemini-2.0-flash 0.541 0.183 0.595 0.702 0.948 0.667
Claude-3.5-Sonnet 0.461 0.117 0.508 0.574 1.000 0.571

Open-Source (7B-Level)
Llama-3.1-8B-Instruct 0.232 0.011 0.245 0.404 0.534 0.476
Qwen2.5-Coder-7B-Instruct 0.258 0.018 0.270 0.394 0.638 0.286
Yi-Coder-9B-Chat 0.247 0.021 0.314 0.324 0.362 0.286

Open-Source (32B-Level)
Qwen2.5-Coder-32B-Instruct 0.352 0.067 0.391 0.532 0.569 0.666
QwQ-32B-Preview 0.515 0.261 0.606 0.553 0.828 0.381

Open-Source (70B-Level)
Llama-3.3-70B-Instruct 0.493 0.163 0.515 0.681 1.000 0.476
Qwen2.5-72B-Instruct 0.330 0.110 0.350 0.452 0.517 0.429

Open-Source (Large Model)
Deepseek-V3 0.572 0.219 0.622 0.750 0.966 0.810
Deepseek-R1 0.609 0.304 0.677 0.766 0.966 0.860

advantage on Depth4 problems (APD@1: 0.916 vs. 1.208 for DeepSeek-V3), indicating current
reasoning patterns inadequately handle deep dependency chains. This suggests models could benefit
from explicit dependency tracking mechanisms and iterative verification loops during code generation.
For another perspective, we report APT@1 in Table 2. Notably, the trends of APT closely align with
APD, reinforcing our observations of models’ depth-wise performance.

4.2 Analysis and Discussion

Dependency Structure Challenges in Multi-turn Scenarios A deeper look of solved problems
reveals a striking imbalance: the majority of correctly addressed cases correspond to problems with
simple, linear dependency structures (e.g., shallow call graphs or sequential function compositions).
However, as problem architectures evolve toward modular and hierarchical dependencies (e.g., nested
function calls, interdependent components), state-of-the-art models exhibit significant performance
degradation. This phenomenon is empirically validated in Figure 5, which illustrates the Pass@1
scores across varying turn counts. The consistent performance trajectory—initially high for 1-2 turn
problems followed by approximately exponential decline as turn counts increase—demonstrates the
inherent challenges in multi-turn code generation. Even top-performing models (e.g., Deepseek-R1
with 20.5% Pass@1) fail to solve problems requiring more than six turns. This underscores the critical
limitation to balance local correctness and global integration across iterative development cycles. To
quantity dependency structure complexity, we introduce the Dependency Structure Complexity (DSC)
metric, defined as the ratio of total turns to the maximum depth in the AST. Figure 13 presents the
models’ performance across different DSC intervals, revealing that most models perform well on
problems with linear dependency structures but struggle significantly as the dependency structure
becomes more complex. We leave the discussion on DSC in Appendix E.1.

Fine-Grained Error Types in Multi-turn Generation Given the significant performance gap be-
tween models in multi-turn and single-turn scenarios, we conducted studies to identify the underlying
reasons. We categorized errors into three primary types: (1) Incomplete Reasoning (IR): Models
often handle only straightforward "happy-path" cases and fail to generalize. They may oversimplify
key requirements, omit boundary or atypical cases, or choose naive algorithms whose logic or per-
formance collapses on larger inputs. This reflects a limitation in the models’ reasoning abilities. (2)
Insufficient Globalization (IG): While a function’s logic may run correctly in isolation, it may omit
necessary imports, global constants, or shared-state interactions, preventing proper integration into
the broader application or runtime. This indicates a limitation in the models’ ability to manage global
context. (3) Instruction Misinterpretation (IM): Given multi-turn prompts, models could solve
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Figure 5: The Pass@1 metrics on multi-turn problems grouped by model categories and turn number.

isolated subproblems but lack a coherent understanding of the overarching goal. Typical failures
include misusing helper functions or implementing disorganized code within the top-level function,
i.e. incorrect integration of components. To quantify the distribution of errors, we randomly sampled
examples and manually annotated error categories. The proportion is calculated in Table 3.

Table 3: Proportion of each error type on Deepseek-V3 and o1-mini. The IR Remediation Rate is the
proportion of IR errors in multi-turn scenario which are correctly answered in single-turn scenario.

Model IR(%) IG(%) IM(%) Others(%) IR Remediation Rate(%)

Deepseek-v3 47.2 14.6 32.6 5.6 16.7
o1-mini 38.7 11.8 43.0 6.5 8.3

Table 3 offers several insights. First, Incomplete Reasoning remains the dominant error type which is
the main challenge of competition-level problems. To distinguish the effect of multi-turn scenario,
we further introduce IR Remediation Rate to quantify how much of IR can be fixed when switching
from multi-turn to single-turn scenarios. The statistics show that, most IR errors (30% of all error
types) originate from the multi-turn scenario. Furthermore, Insufficient Globalization and Instruction
Misinterpretation are inherently specific to multi-turn scenarios. The high rate of IM errors highlights
that models struggle with consistent instruction following across multiple turns, or the codeflow task.
Finally, IG errors reveal that models often lack "global awareness", highlighting the importance of
both local correctness and global coherence evaluation. We leave case studies in Appendix E.2.

5 Conclusion

This paper introduces CodeFlowBench, the first benchmark specifically designed to evaluate multi-
turn iterative code generation capabilities in realistic development workflows, i.e., the codeflow.
Comprising 5,258 competition-level programming problems curated from Codeforces, our benchmark
makes three key contributions: (1) an automated pipeline for decomposing complex problems into
dependency-aware subproblems with paired unit tests, (2) a novel evaluation framework with proposed
structural metrics, such as APT@k, APD@k, and DSC, to quantify multi-turn performance, and
(3) the discovery of substantial performance gaps between multi-turn and single-turn scenarios (up
to 60% performance degradation). Our fine-grained analysis identifies dominant failure modes
and provides insights for further advancements. Extensive experiments across 16 popular LLMs
highlight the substantial challenges posed by both the codeflow task and our benchmark. We believe
CodeFlowBench not only illuminates critical limitations in existing LLMs but also paves the way
for more realistic and powerful code generation systems. Future Work: CodeFlowBench currently
remains confined to competition-level problems, which should be expanded with repository-level
challenges. We also plan to design and train dedicated code generators tailored to the codeflow task.
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A Features of CodeFlowBench

We collect problems from Codeforces, which offer following advantages to our benchmark:

High difficulty. Even state-of-the-art LLMs have low pass rates on Codeforces problems [32].
Compared to simple and straightforward code implementation, competitive problems can make
multi-turn, iterative solution process more realistic and meaningful.

High quality. Unlike many open-source repositories, Codeforces publishes official editorial and
provides automated correctness checks, ensuring the integrity of our dataset’s problems.

Periodic updates. To maintain uncontaminated test data and ensure fairness, it is essential that
benchmarks can be refreshed regularly. Codeforces releases new problems at a high frequency,
enabling continuous updates for CodeFlowBench.

B Data Curation Pipeline

B.1 Detail of Problem Scraping

The original problem contain two parts. The first part is scraped from its corresponding codeforces
official website. An example problem page is shown in Figure 6.

The second part is scraped by Problemsets.Problems2 API provided by Codeforces.We record the
rating and tags of each problem. Rating is a metric that reflect the difficulty of the problem and tags
is a list that contains knowledge scope of the problem.

https://codeforces.com/api/problemset.problems
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Figure 6: An example page of problems on Codeforces, which contains problem ID, title, time and
memory complexity limits, problem description, input description, output description, sample tests,
notes of each problem.The original problem is 196E

.
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Figure 7: An example of original coding problem we obtained in stage I.To make the content more
clear, we remove html denotions that contained in original content. The original problem is 1946E,
which is used for illustration in Figure 3

.

Combine the above two part, we obtain a original coding problem for CodeFlowBench, a full example
is shown in Figure 7.

B.2 Detail of Solution Scraping

During the problem-scraping process, we also collected the links under the “Contest material” section
on the right side of each problem page and identified which of those led to solution blogs. Crawling
these editorial pages is fairly complex, because Codeforces’ official write-ups are hosted as personal
blogs whose formats can vary over time, making content extraction more challenging. Although each
round’s problems (e.g. “123A,” “123B,” etc.) live on separate pages, all of the editorials for a given
numeric ID usually appear on a single blog page. We therefore need to assign each sub-problem’s
write-up (A, B, C, . . . ) to its corresponding problem. To do this, our crawler first locates the distinct
anchor points that mark each sub-problem section, then extracts the content between each anchor and
the next as that problem’s editorial. The benefit of this approach is that, while in the end we only
need the solution code itself, editorials often consist of plain text explanations, a single code snippet,
or multiple code variants and languages. Relying on a purely mechanical scraper makes it difficult to
isolate exactly the code we want, so it’s more effective to pass the raw editorial content to an LLM
for final organization and extraction.

In general, there are two ways to locate an anchor: by URL and by text. Blogs label problems in
many different forms. However, most blogs make that label into a hyperlink pointing back to the
original problem, which gives us a reliable way to identify the anchor.

Therefore, our primary and most precise method is to search for a URL containing the problem ID
(for example, “problemset/problem/2060/A” or “contest/blog/2060/A”) and treat its position as the
anchor. Once the anchor is found, we scan the surrounding page and extract its content to obtain
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the editorial.Anchor scanning and recording also relies on a problem-ID reference table, which we
built from the IDs of all problems scraped in the first step. Its main role is to guide the code when
matching anchors: for instance, if the table shows that numeric ID 2060 has sub-IDs “A” through “G”,
the scraper first reads those sub-IDs, then walks through the page using the URL-based or text-based
method to record the exact anchor for each sub-ID.An example that fit URL anchor identification
technique in shown in Figure 8a.

However, there are still little parts of early editorial blogs didn’t include URL hyperlinks, so in
those cases we fall back on regular-expression–based text matching wherever possible. Based on the
formats we observed, we designed two main matching strategies:

• Difficulty-label matching. A number of blogs publish all of a round’s problems on one page
and mark them with labels like “Div2” or “Div1” (since most rounds contain two Div2-level
problems and several Div1-level ones). To handle this, we use our problem-ID reference
table to identify all sub-IDs belonging to the same numeric contest but with different
difficulty levels, tag them accordingly in the table, and then, during the anchor-matching
process, if the scraper detects a difficulty label it will also try to match anchors based on that
label. An example is shown in Figure 8b.

• Problem-label matching. Beyond difficulty tags, many blogs use the literal “Problem
A”, “Problem B”, etc. format. We include a specific regex pattern to detect those
“Problem+sub-ID” labels and assign each section to the correct sub-problem.

(a) (b)

Figure 8: Subfigure (a) is an example of using URL anchor identification technique. The anchor here
is each subtitle displayed as "2060A-Fibonacciness". The blue font color of such subtitle indicates a
URL to original problem page is setted. In practice, the existence of URL is identified by analysing
the HTML code of this website.For this kind of website, we identify these subtitles as anchors and
scrape the content between each subtitle.Subfigure (b) is an example of using div anchor identification
technique.The anchor here is each subtitle displayed as "Div2A. Parallelepiped".These kinds of
subtitle occurs in a contest round that contain two div level problems.We use reference table to project
the div notation to original problem id and then identify them as corresponding anchor.
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Figure 9: The scraped and processed solution we obtained in stage II. The original problem is 1946E
.

After crawling the editorial for each problem, we applied a series of processing steps to ensure
quality.Firstly, we removed any editorials that were too short or empty—these problems were
excluded from the dataset. To make it easier for an LLM to understand and process them, we then
split each editorial into two parts: the code solution and the textual explanation, so that the model can
consult the code first and then the accompanying text.The processed result is shown in Figure 9.

B.3 Detail of Solution Code Generation

Although we’ve already scraped the official solution for each problem, an LLM-based post-processing
step is still required for two main reasons:(1) Presence of “global code segments”. Some solutions
include code that isn’t encapsulated in any function. We must split the entire codebase into multiple
functions and ensure that the top-level function can fully solve the problem. Since these global
segments can’t be recognized during standard parsing, we rely on an LLM to reorganize the provided
code so that it becomes fully parsable.(2)Early solutions exist only as text.Some of the older official
solutions consist solely of textual descriptions without any runnable code. We need an LLM to
convert those narratives into executable code.The prompt template for code convert is shown in
Figure 10 The Codeforces official judging system is used to verify code correctness. We employ an
automated submission bot that navigates to the Codeforces submission page3, fills in all required
fields, and submits the solution. The site will be automatically redirects to the results page after
submission, from which we scrape the verification outcome.

B.4 Detail of Subproblems Generation

While the parsing process is automatically, a LLM is still needed for generating natural language de-
scription for each subproblem.The prompt template is shown in Figure 11 A example of subproblems
in shown in Figure 12.

B.5 Detail of Test Cases Generation

Overall, CodeFlowBench’s test suite is composed of two parts:

• Top-level function tests For the final subproblem—the top-level function (e.g., main or
solve) that handles overall input and output—we use the public test cases provided by the
Codeforces platform.

https://codeforces.com/problemset/submit
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Figure 10: The prompt template used for code convertion in stage III.The whole content of the
example output data is not shown for length limitation.
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Figure 11: The prompt template used for generating natural language description for each subproblem
in stage III.
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Figure 12: An example of subproblems we obtained in stage IV.The solution code of 1946E contains
a comb function which serve as the basic tool and is reused in solve function to address the whole
problem.It’s obvious that in its AST, the comb function is the leave node in depth 1 and the solve
function is the root node in depth 0.

• Subproblem function tests For every other subproblem (i.e. functions invoked by higher-
level code), we wrap each function call in a helper that redirects stdin and stdout to an
internal buffer and records the resulting I/O. This can generate redundant calls for the same
function, so we apply two safeguards to keep the test suite concise: deduplication of identical
test cases and limiting the total number of test cases per function.These measures ensure
comprehensive coverage without unnecessary duplication or excessive test-case volume.

Such method can ensure the test case generation pipeline to be automatic and the case itself to be
correct.

C Mathematical Expression of PD@k& APD@k

For a given problem, we define PD@k as the expected maximum pass depth over k independent
trials of the model. Directly using only those k results leads to high variance, just as with the pass@k
metric. By analogy to the unbiased estimator for pass@k, which leverages n trials (n > k) to reduce
variance, we derive a similar estimator for PD@k.

Let the pass depths from n trials be:

{d1, d2, . . . , dn},

and let
d(1) ≤ d(2) ≤ · · · ≤ d(n)
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denote these depths in ascending order. Then an unbiased estimator for PD@k is

PD@k =

n∑
j=k

d(j)

(
j−1
k−1

)(
n
k

) . (1)

To see how this arises, consider sampling a random subset of size k from the n depths. Let M =
max{ di1 , di2 , . . . , dik} be the maximum depth in that subset. An unbiased estimator of M is E[M ].
By construct E[M ] = PD@k ,this estimator is unbiased since its expected value exactly equals the
true expected maximum depth. Consider all possible value of M , we have:

E[M ] =
∑
m

mP (M = m) =

n∑
j=k

d(j) P
(
M = d(j)

)
. (2)

The probability that M = d(j) equals the probability of choosing d(j) along with k − 1 depths from
the first j − 1 smaller values:

P
(
M = d(j)

)
=

(
j − 1

k − 1

)
(
n

k

) . (3)

Combining (3) and (4) immediately recovers (1).

Finally, we define

APD@k =
1

|P|
∑
p∈P

PD@k(p) (4)

the average PD@k over the set P of all problems.

D Experiment

D.1 The Setting of Experiment

Due to the substantial size of the total question pool (N = 5258), we implemented stratified sampling
with proportional allocation across overall-depth categories to select 1,000 test samples, as detailed in
Table 4. To validate sampling quality, we conducted a χ2 test comparing the overall-turn distributions
between the population and sampled data (Table 5). The statistical analysis yielded a p-value of
0.1246, indicating no significant difference (α = 0.05) in distribution patterns. This confirms the
representativeness of our sampling strategy and ensures the validity of subsequent analytical outcomes.

Table 4: Comparison of Overall-Depth Proportions Between the Population and the Sample
Overall-Depth # Population Pop. Proportion (%) # Sample Sam. Proportion (%)

1 1,488 28.3 283 28.3
2 2,751 52.3 523 52.3
3 870 16.5 165 16.5
4 125 2.4 24 2.4
≥5 24 0.5 5 0.5

Total 5,258 100.0 1,000 100.0

21



Table 5: Comparison of Overall-Turn Proportions Between the Population and the Sample
Overall-Turn # Population Pop. Proportion (%) # Sample Sam. Proportion (%)

1 1,488 28.3 283 28.3
2 2,158 41.0 437 43.7
3 990 18.8 188 18.8
4 402 7.6 58 5.8
5 149 2.8 21 2.1
6 46 0.9 6 0.6
≥7 25 0.5 7 0.7

Total 5,258 100.0 1,000 100.0

D.2 Instruction Templates

Multi-turn Test

You are a Programming Expert. You always provide correct and reliable code solutions. You will be provided
with the background of the whole problem, a programming problem and may also some pre-implemented
functions.If pre-implemented functions provided, you need to call the pre-implemented functions and write a
new function to solve the problem.

## Background of the whole problem:
{problem_description}

## Problem Description: You need to complete name function.
{statement}

## Dependency information:
To solve the problem, you need to utilize the ## Pre-implemented functions {dependencies} provided.

## Pre-implemented functions:
{history}

## Guidelines:
- Ensure the function is executable and meets the requirement.
- Handle ## Dependency information correctly.
- Provide clear and concise comments to explain key parts of the code.

Return your response by filling the function body following the function signature provided. Just generate the
function and don’t output any examples.

In the instruction template for multi-turn testing, we implemented a set of basic heuristics to adapt to
different problem types. For example, if a question has no dependencies, we omit the “## Dependency
information” section. If no prior code is provided—which is common when the overall depth is
1—we exclude the “## Pre-implemented functions” section. Furthermore, if it is the final turn of the
code, we append the following snippet:

i m p o r t s y s
d e f {name } ( ) :

i n p u t = s y s . s t d i n . r e a d ( ) . s p l i t ( )
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Single-turn Test

You are a Programming Expert. You always provide correct and reliable code solutions. You are required to
solve a problem which consists of multiple subproblems, each with its own requirements. You will be provided
with the background of the problem and description of all subproblems. You need to generate the complete
implementations for all subproblems in a single response. The response for the final subproblem will be tested
using stdin and stdout. Ensure the corresponding code meet this requirement.

## Background of the whole problem:
{problem_description}

## Problem Description:
{combined_subproblem_description}
## Subproblem {name}
# Description:
You need to complete {name} function.
{statement}
To solve the problem, you need to utilize your pre-implemented function {dependencies}.

## Guidelines: - Ensure that all functions are executable and meet their respective requirements.
- For each subproblem, correctly handle any dependency information.
- Provide clear and concise comments explaining the key parts of the code.
- For the last subproblem name, please use ’import sys\ndef {name}():\n input = sys.stdin.read().split()\n" as
the beginning.

Return your response by generating all functions in a single code block.

Similarly, if the problem does not have any dependencies, we will also omit the section related to
{dependencies}.

D.3 Pass Turn Result

Table 6: Multi-turn pass@turn results for various models.

Model Average Turn-1 Turn-2 Turn-3 Turn-4 Turn-5
Closed-Source
o3-mini 0.600 0.322 0.632 0.777 0.983 0.571
o1-mini 0.581 0.233 0.645 0.798 0.879 0.667
GPT-4.1-mini 0.646 0.265 0.760 0.803 1.034 0.762
GPT-4o 0.537 0.177 0.604 0.697 1.017 0.476
GPT-4o-mini 0.467 0.137 0.501 0.638 0.982 0.476
Gemini-2.0-flash 0.541 0.183 0.595 0.702 0.948 0.667
Claude-3.5-Sonnet 0.461 0.117 0.508 0.574 1.000 0.571

Open-Source (7B-Level)
Qwen2.5-Coder-7B-Instruct 0.258 0.018 0.270 0.394 0.638 0.286
Llama-3.1-8B-Instruct 0.232 0.011 0.245 0.404 0.534 0.476
Yi-Coder-9B-Chat 0.247 0.021 0.314 0.324 0.362 0.286

Open-Source (32B-Level)
Qwen2.5-Coder-32B-Instruct 0.352 0.067 0.391 0.532 0.569 0.666
QwQ-32B-Preview 0.515 0.261 0.606 0.553 0.828 0.381

Open-Source (70B-Level)
Llama-3.3-70B-Instruct 0.493 0.163 0.515 0.681 1.000 0.476
Qwen2.5-72B-Instruct 0.330 0.110 0.350 0.452 0.517 0.429

Open-Source (Large Model)
Deepseek-V3 0.572 0.219 0.622 0.750 0.966 0.810
Deepseek-R1 0.609 0.304 0.677 0.766 0.966 0.860
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E Discussion

E.1 Discussion on Models’ DSC Performance

For a problem, the DSC metric is defined as:

DSC(problem) =
Overall-Turns(problem)
Overall-Depth(problem)

Recall that the overall-turn and overall-depth of a problem are derived from its AST, corresponding
to the number of nodes and the depth of its AST. Based on this, we can see that a high DSC value
indicates a problem with a complex dependency structure. Figure 13 presents the pass@1 scores
of models across different DSC intervals. It can be observed that most models are only capable of
solving problems with DSC equal to 1, which corresponds to a simple linear dependency structure.
Only a few leading models are able to solve a limited number of problems with DSC values below
1.33. All models struggle significantly when faced with problems involving more complex structures.

Figure 13: Heatmap of models’ pass@1 scores on multi-turn problems within different DSC intervals.

E.2 Error Case Study

We have defined three typical error types for test in multi-turn pattern, in this part we will introduce
several example to illustrate them.We have simplify and arrange model’s outputs to make it clear to
read. The content of "generated" field is model’s output. The content of "harness_result" field is the
verification result by running it with test cases."1" denotes accepted, "0" denotes wrong answer and
"wrong" denotes running error.
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Figure 14: Example of an Incomplete Reasoning (IR) Error by Deepseek-V3.The original problem
is 1799F.The algorithm produced by the model fails to find the global optimum because it greedily
sorts each element according to the single-step gain—choosing either the halving operation or the
subtraction operation in isolation. In reality, achieving the global optimum requires a two-dimensional
dynamic-programming solution that considers both operations jointly.
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Figure 15: Example 1 of an Insufficient Globalization(IG) error by Deepseek-V3.The original
problem is 2005D.The model’s generated code omitted the import math statement, resulting in an
error when calling gcd. This issue stems from improper handling of external imports.

Figure 16: Example 2 of an Insufficient Globalization(IG) error by Deepseek-V3.The original
problem is 1734F Because the program reads new inputs and performs fresh calculations for each
test case, failing to clear the cache beforehand can inadvertently reuse stale results from a previous
case. This leads to incorrect output due to unintended interaction between caching and I/O.
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Figure 17: Example of an Instruction Misinterpretation(IM) error by Deepseek-V3.The original
problem is 1575H Although the DP routine correctly unpacks both transition and match_counts
from build_transition(b), it merely treats match_counts as an ordinary list. In reality, match_counts
carries two essential pieces of semantic information.(1)Match indicator.It denotes a complete match
of b.(2)Backtrack hint. It’s a hint in combination with the prefix function, indicating how far the
automaton should jump back after a match to continue detecting overlapping occurrences. This error
is caused by models’ misinterpretation to the dependency relationship between tool function and
top-level function
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F Impact Statement

This paper introduces CodeFlowBench, a comprehensive benchmark for evaluating code generation
models in realistic multi-turn, dependency-driven development scenarios. For research, CodeFlow-
Bench fills a critical gap by providing a standardized suite of tasks that require iterative reasoning,
function dependency management, and end-to-end solution assembly. By exposing models’ defi-
ciencies in global awareness, instruction consistency, and dependency handling, CodeFlowBench
will catalyze the design of new architectures and training paradigms that explicitly model iterative
workflows and cross-turn coherence. Its open dataset and evaluation protocol invite the community to
develop and compare dependency-aware generation strategies, driving progress toward more robust
and developer-friendly code assistants.

In industry, CodeFlowBench offers a practical yardstick for assessing the readiness of AI coding
tools in real-world software development, where tasks rarely appear as isolated single-step prompts.
Integrating CodeFlowBench into CI/CD pipelines can help organizations detect and remediate
weaknesses in model-powered code suggestions before deployment, reducing debugging overhead
and technical debt. By highlighting the importance of function reuse, import management, and state
consistency across revisions, CodeFlowBench insights can inform best practices for AI-augmented
coding workflows, accelerating adoption of reliable co-programming solutions. There are broader
societal implications in enabling safer, more maintainable AI-generated code, yet none that we believe
warrant special emphasis here.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims are clearly presented in the abstract and introduction, and are
further elaborated and substantiated throughout the subsequent sections of the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Please refer to the Section 5 in the paper.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Please refer to the Section 3.1 and Appendix D.1 in the paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: We provide well-documented repositories to store dataset and code. The URL
can be found in the first page.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Please refer to the Section 4 and Appendix D.1, D.2 in the paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Please refer to the Section 4 and Appendix D.1 in the paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification:Please refer to the Section 4 and Appendix D.1 in the paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This paper conforms, in every respect, with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Please refer to the Appendix F in the paper.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The creators and original owners of all assets used in the paper are properly
credited, and the licenses and terms of use are explicitly mentioned and fully respected.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper doesn’t include crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: LLM is used as a tool in data curation pipeline. Please refer to the Section 3.1
and Appendix B.3, B.4 in the paper.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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